
CS 59000-05 Exam Fall 2014

The following questions ask you to analyze some code fragments and to write some
code fragments. When you analyze some code, your analysis should be written in complete
sentences organized into paragraphs. Do not write sentence fragments and do not write
the most terse answer that you can think of (even if it is essentially correct). You are being
graded on your ability to communicate, not just on your ability to arrive at correct solutions.

When you write code fragments, you do not need to write compilable code. Just make
sure that your code is not in any way ambiguous.

Write all your answers neatly using a computer document format. You can write your
answers in a plain text file, a MS Word document, an HTML page, or even in LATEX. Put
your exam, and any supporting files that you might like to submit (like compilable code), in
a zip file and submit your zip file to me using Blackboard.

Each person should work on this exam by them self. If you have any questions about the
exam, feel free to send me an e-mail.

This exam should be turned in by Friday, December 19.

1. The following code outlines a synchronization pattern. Assume that the two threads
begin at the same time, each thread runs on its own core, and there are no other (sig-
nificant) threads running on the cores.

void *thread1(void *vargp)

{ while(1)

{ << do Calculation A >>

sem_post(&semaphore1);

<< do Calculation B >>

sem_post(&semaphore2);

sem_wait(&semaphore3);

}

}

void *thread2(void *vargp)

{ while(1)

{ sem_wait(&semaphore1);

<< do Calculation C >>

sem_post(&semaphore3);

sem_wait(&semaphore2);

}

}

sem_t semaphore1, semaphore2, semaphore3;

int main()

{ pthread_t tid;

sem_init(&semaphore1, 0, 0); // not signaled

sem_init(&semaphore2, 0, 0); // not signaled

sem_init(&semaphore3, 0, 0); // not signaled

pthread_create(&tid, NULL, thread1, NULL);

pthread_create(&tid, NULL, thread2, NULL);

while(1){ Sleep(1000); }

}

(a) (15 points) In what way are the two threads synchronized? Give your answer in
terms of how the three calculations, A, B, and C, are ordered in time. Explain
carefully what role each of the three semaphores plays in the synchronization.

Solution:

(b) (15 points) Rewrite this program using condition variables.

Solution:

2. Suppose that we have five C functions that together solve some problem. Suppose these
functions, labeled A through E, depend on each other according to the following graph.

A B C

D

E

Each edge of the graph denotes a dependency between two of these functions. For
example, the edge from node B to node D means that functionB must be called, and
must return, before functionD can be called.

(a) (10 points) What is wrong with this sketch of a C program that uses Pthreads to
execute the five functions in parallel in a way that adheres to the above dependency
graph? How would you improve this program (but still use five worker threads and
only the Pthreads functions pthread create() and pthread join())?

void *threadA(void *vargp){ functionA(); }

void *threadB(void *vargp){ functionB(); }

void *threadC(void *vargp){ functionC(); }

void *threadD(void *vargp){ functionD(); }

void *threadE(void *vargp){ functionE(); }

int main()

{ pthread_t tidA, tidB, tidC, tidD, tidE;

pthread_create(&tidB, NULL, threadB, NULL);

pthread_create(&tidC, NULL, threadC, NULL);

pthread_join(tidB, NULL);

pthread_join(tidC, NULL);

pthread_create(&tidA, NULL, threadA, NULL);

pthread_create(&tidD, NULL, threadD, NULL);

pthread_join(tidA, NULL);

pthread_join(tidD, NULL);

pthread_create(&tidE, NULL, threadE, NULL);

pthread_join(tidE, NULL);

}

Solution:

(b) (10 points) Write another sketch of a Pthreads program to execute the above five
functions in a way that is maximally parallel (i.e., always runs as many threads in
parallel as possible), adheres to the above dependency graph, and uses the minimal
number of threads possible (including the main() thread). Your solution should
still use only pthread join() for synchronization.

Solution:

(c) (10 points) Write a sketch of a Java program that uses Fork-Join to execute the
above five functions in a way that adheres to the above dependency graph, is max-
imally parallel, and uses the minimum number of threads.

Assume that the five functions are static methods in a class called MyTasks.java.
Write a sketch of a main() method and whatever classes that you need that extend
java.util.concurrent.RecursiveAction.

Solution:

3. (15 points) Suppose that we have six C functions

void functionA(void); void functionD(void);

void functionB(void); void functionE(void);

void functionC(void); void functionF(void);

that together solve some problem. Suppose these function depend on each other accord-
ing to the following dependency graph.

A B C

D

F

E

Write a sketch of a C program that uses Pthreads to execute the above six functions in a
way that is maximally parallel, but adheres to the above dependency graph. Give a writ-
ten explanation of how your code solves the problem. You can use any synchronization
mechanism you want (join, condition variables, semeaphores, etc.).

Solution:

4. Suppose we wanted to implement our own mutex class in Java.

class MyMutex {

public Thread locked = null;

public void lock() throws InterruptedException {

if (this.locked != null)

this.wait();

this.locked = Thread.currentThread();

}

public void unlock() {

if (this.locked == Thread.currentThread()) {

this.notify();

this.locked = null;

} else

throw new IllegalStateException();

}

}

(a) (10 points) Correct the mistakes in this impelentation of a mutex class. Explain the
reason for each of your corrections. In particular, what could go wrong if each par-
ticular correction isn’t made? (You can ignore the throws InterruptedException.
It is needed for the code to compile.)

Solution:

(b) (5 points) The documentation for pthread.h

http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_mutex_lock.html

says that the pthread library implements several kinds of mutexes, PTHREAD MUTEX NORMAL,
PTHREAD MUTEX ERRORCHECK, PTHREAD MUTEX RECURSIVE, and PTHREAD MUTEX DEFAULT.
Use the Java documentation

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

to determine which of these kinds of pthread mutexes our repaired Java mutex is
most similar to with respect to the lock() method. Explain why.

Solution:

(c) (5 points) With respect to the unlock() method, which of the above kinds of
pthread mutexes is our repaired Java mutex most similar to? Explain why.

Solution:

(d) (5 points) The proper way to use one of our MyMutex objects looks like this.

mutex.lock();

// do something

mutex.unlock();

Explain carefully what would happen, and why, if you used one of our corrected
MyMutex objects like this.

mutex.lock();

// do something

mutex.notify();

Solution:

12-14-2014 at 20:38 h

